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Objectives
Introduce some key concepts behind the NoSQL family of databases

Why NoSQL?

Why relational databases?

Impedance mismatch – relational models are limiting

Application and integration databases

Distributed database clusters

Introduce aggregate data models

Key-Value data models

Document data models

Column-family store data models



Why NoSQL?



Why Relational Databases?

∙ For decades, relational databases have been the default choice for serious data 
storage

− Persistence: provide a “backing” store for volatile memory

▪ More flexible than a file system for storing large amounts of memory and 
accessing it in small bits

− Concurrency: multiple applications accessing shared data

▪ Transactions

− Integration:  multiple applications store their data in a single database

− Standard:  developers and database professionals can easily move between 
projects and technologies



Impedance Mismatch
∙ Impedance Mismatch: the difference between the relational 

model and the in-memory data structures

− Relational model: everything is a relation – tables of rows

− Structure and relationships have to be mapped

▪ Rich, in-memory structures have to be translated to 
relational representation to be stored on disk

▪ Translation: impedance mismatch



Impedance Mismatch



Impedance Mismatch (cont.)

∙ Object-oriented programming languages became popular in 
1990s, but object-oriented databases did not

∙ Entrenched relational database vendors

− Database as an integration mechanism

− Standard data manipulation language (SQL)

− Professional divide between application developers and 
database administrators

− Object-relational mapping frameworks ease the grunt work

▪ But often result in serious performance issues



Application and Integration Databases

∙ Integration databases are a convenient and powerful method for 
integrating multiple applications developed by different teams

− Common data model, common data store

∙ Integrate many applications becomes (dramatically) more complex than 
any single application needs

− Changes to the data model must be coordinated

− Different structural and performance needs for different applications

− Database integrity becomes an issue

∙ Instead, treat the database as an application database

− Single application, single development team

− Provide alternate integration mechanisms



Alternate Integration Mechanism: Services

∙ More recent push to use Web Services where applications 
integrate over HTTP communications

− XML-RPC, SOAP, REST

∙ Results in more flexibility for exchange data structure

− XML, JSON, etc.

− Text-based protocols

∙ Results in letting application developers choose database

− Application databases

− Relational databases are often still an appropriate choice



The Attack of the Clusters

∙ The 2000s saw the web grow enormously

− Web use tracking data, social networks, activity logs, mapping data, 
etc.

− Huge websites serving huge numbers of visitors

∙ To handle the increase in data and traffic required more computing 
resources

∙ Instead of building bigger machines with more processors, storage, and 
memory, use clusters of small, commodity machines

− Cheaper, more resilient

∙ But relational databases are not designed to be run on clusters



Clustered Relational Databases
∙ Clustered relational databases such as Oracle Real Application 

Clusters (RAC) and Microsoft SQL Server still work against a single 
database disk subsystem

− A cluster-aware file system and a highly-available disk subsystem

− Disk subsystem is a single point of failure

∙ Can also partition the database into functionally distinct subsets 
(“sharding”)

− Each application has to keep track of which database server to talk 
to for each bit of data

− Lose cross-shard querying, referential integrity, transactions, or 
consistency control

∙ Commercial relational database licenses are typically per node, raising 
overall cost for clusters



“sharding”

Size and Transaction Volume (linear 

growth):
• CPU

• Memory

• Disk

Response time (exponential growth)

You cannot add an unlimited number of CPUs (or processing cores) and see a commensurate increase in 

performance without also improving the memory capacity and performance of the disk drive subsystem

http://www.agildata.com/database-sharding/

http://www.agildata.com/database-sharding/


“sharding” Advantages (smaller databases):
• Easier to manage

• Faster

• Reduce costs

Disadvantages (challenges):

• Reliability (backups, redundancy, failover, 

disaster recovery)

• Distributed queries (cross-shard joins)

• Auto-increment key management

• Multiple shard schemes (session/transaction or 

statement based sharding)

http://www.agildata.com/database-sharding/

http://www.agildata.com/database-sharding/


New Opportunities

∙ The mismatch between relational databases and clusters led 
some organizations to consider alternative approaches to data 
storage

− Google and Amazon have been very influential

▪ Large clusters and huge amounts of data

▪ Google: BigTable paper; Amazon: Dynamo paper

∙ Few organizations need the scale of Google or Amazon, but 
many organizations are seeing an exponential increase in data 
storage and use

∙ New styles of databases explicitly designed to run on clusters



The Emergence of NoSQL
∙ Historical note:  ‘NoSQL’ was first used to name an open-source 

relational database development led by Carlo Strozzi

− Based on ASCII storage of tables manipulated through Unix shell 
scripts instead of SQL

− No influence on databases under the current use of the term 
‘NoSQL’

∙ Current use of the phrase came from a conference meetup discussing 
“open-source, distributed, nonrelational databases”

− Talks from Voldemort, Cassandra, Dynomite, HBase, Hypertable, 
CouchDB, MongoDB

∙ No generally accepted definition of ‘NoSQL’

− Often “Not only SQL”



Characteristics of NoSQL Databases

∙ They do not use SQL and the relational model

− Some do have query languages which are similar to SQL to be easy to learn 
and use

∙ Mostly open-source projects

∙ Designed to be distributed – clustered

− No expectation of ACID properties

− Range of options for consistency and distribution

∙ Schema free

− Freely add fields to records without having to define any changes in structure 
first

− Non-uniform data and custom fields

∙ A noDefinition of NoSQL:  An ill-defined set of mostly open-source databases, 
mostly developed in the early 21st century, and mostly not using SQL



The DB world

https://blogs.the451group.com/information_management/2011/04/15/nosql-newsql-and-beyond/
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