
Source:
Pramod J. Sadalage and Martin Fowler

NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot
Persistence, Pearson Education, 2013

NoSQL

Objectives
Introduce some key concepts behind the NoSQL family of databases

Why NoSQL?

Why relational databases?

Impedance mismatch – relational models are limiting

Application and integration databases

Distributed database clusters

Introduce aggregate data models

Key-Value data models

Document data models

Column-family store data models

Why NoSQL?

Why Relational Databases?

∙ For decades, relational databases have been the default choice for serious data
storage

− Persistence: provide a “backing” store for volatile memory

▪ More flexible than a file system for storing large amounts of memory and
accessing it in small bits

− Concurrency: multiple applications accessing shared data

▪ Transactions

− Integration: multiple applications store their data in a single database

− Standard: developers and database professionals can easily move between
projects and technologies

Impedance Mismatch
∙ Impedance Mismatch: the difference between the relational

model and the in-memory data structures

− Relational model: everything is a relation – tables of rows

− Structure and relationships have to be mapped

▪ Rich, in-memory structures have to be translated to
relational representation to be stored on disk

▪ Translation: impedance mismatch

Impedance Mismatch

Impedance Mismatch (cont.)

∙ Object-oriented programming languages became popular in
1990s, but object-oriented databases did not

∙ Entrenched relational database vendors

− Database as an integration mechanism

− Standard data manipulation language (SQL)

− Professional divide between application developers and
database administrators

− Object-relational mapping frameworks ease the grunt work

▪ But often result in serious performance issues

Application and Integration Databases

∙ Integration databases are a convenient and powerful method for
integrating multiple applications developed by different teams

− Common data model, common data store

∙ Integrate many applications becomes (dramatically) more complex than
any single application needs

− Changes to the data model must be coordinated

− Different structural and performance needs for different applications

− Database integrity becomes an issue

∙ Instead, treat the database as an application database

− Single application, single development team

− Provide alternate integration mechanisms

Alternate Integration Mechanism: Services

∙ More recent push to use Web Services where applications
integrate over HTTP communications

− XML-RPC, SOAP, REST

∙ Results in more flexibility for exchange data structure

− XML, JSON, etc.

− Text-based protocols

∙ Results in letting application developers choose database

− Application databases

− Relational databases are often still an appropriate choice

The Attack of the Clusters

∙ The 2000s saw the web grow enormously

− Web use tracking data, social networks, activity logs, mapping data,
etc.

− Huge websites serving huge numbers of visitors

∙ To handle the increase in data and traffic required more computing
resources

∙ Instead of building bigger machines with more processors, storage, and
memory, use clusters of small, commodity machines

− Cheaper, more resilient

∙ But relational databases are not designed to be run on clusters

Clustered Relational Databases
∙ Clustered relational databases such as Oracle Real Application

Clusters (RAC) and Microsoft SQL Server still work against a single
database disk subsystem

− A cluster-aware file system and a highly-available disk subsystem

− Disk subsystem is a single point of failure

∙ Can also partition the database into functionally distinct subsets
(“sharding”)

− Each application has to keep track of which database server to talk
to for each bit of data

− Lose cross-shard querying, referential integrity, transactions, or
consistency control

∙ Commercial relational database licenses are typically per node, raising
overall cost for clusters

“sharding”

Size and Transaction Volume (linear

growth):
• CPU

• Memory

• Disk

Response time (exponential growth)

You cannot add an unlimited number of CPUs (or processing cores) and see a commensurate increase in

performance without also improving the memory capacity and performance of the disk drive subsystem

http://www.agildata.com/database-sharding/

http://www.agildata.com/database-sharding/

“sharding” Advantages (smaller databases):
• Easier to manage

• Faster

• Reduce costs

Disadvantages (challenges):

• Reliability (backups, redundancy, failover,

disaster recovery)

• Distributed queries (cross-shard joins)

• Auto-increment key management

• Multiple shard schemes (session/transaction or

statement based sharding)

http://www.agildata.com/database-sharding/

http://www.agildata.com/database-sharding/

New Opportunities

∙ The mismatch between relational databases and clusters led
some organizations to consider alternative approaches to data
storage

− Google and Amazon have been very influential

▪ Large clusters and huge amounts of data

▪ Google: BigTable paper; Amazon: Dynamo paper

∙ Few organizations need the scale of Google or Amazon, but
many organizations are seeing an exponential increase in data
storage and use

∙ New styles of databases explicitly designed to run on clusters

The Emergence of NoSQL
∙ Historical note: ‘NoSQL’ was first used to name an open-source

relational database development led by Carlo Strozzi

− Based on ASCII storage of tables manipulated through Unix shell
scripts instead of SQL

− No influence on databases under the current use of the term
‘NoSQL’

∙ Current use of the phrase came from a conference meetup discussing
“open-source, distributed, nonrelational databases”

− Talks from Voldemort, Cassandra, Dynomite, HBase, Hypertable,
CouchDB, MongoDB

∙ No generally accepted definition of ‘NoSQL’

− Often “Not only SQL”

Characteristics of NoSQL Databases

∙ They do not use SQL and the relational model

− Some do have query languages which are similar to SQL to be easy to learn
and use

∙ Mostly open-source projects

∙ Designed to be distributed – clustered

− No expectation of ACID properties

− Range of options for consistency and distribution

∙ Schema free

− Freely add fields to records without having to define any changes in structure
first

− Non-uniform data and custom fields

∙ A noDefinition of NoSQL: An ill-defined set of mostly open-source databases,
mostly developed in the early 21st century, and mostly not using SQL

The DB world

https://blogs.the451group.com/information_management/2011/04/15/nosql-newsql-and-beyond/

https://blogs.the451group.com/information_management/2011/04/15/nosql-newsql-and-beyond/
https://blogs.the451group.com/information_management/2011/04/15/nosql-newsql-and-beyond/

Polyglot Persistence (Fowler)

Polyglot Persistence (Fowler)

